J. APPL. MECH. AND TECH. PHYS.

ONE-DIMENSIONAL FLOWS OF A NONEQUILIBRIUM PLASMA WITH VARIABLE
DEGREE OF IONIZATION IN THE ABSENCE OF CURRENTS

V. M. Sarychev

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki,

The one-dimensional flows of an inviscid plasma not in thermal equi-
librium and with a variable degree of ionization are investigated in the
absence of currents, A criterion showing when the ordinary equations
of gasdynamics may be used to describe these flows is given. An ex-
pression is found for the velocity of sound in such a plasma. Under
certain conditions it passes into Newton's formula for isothermal sound.
The condition fulfilled in the critical cross section of the channel is
found. It is established that the flow of a weakly ionized plasma oc-
curs at constant electron temperature. A detailed investigation is
made of the possible types of flow in a cylindrical channel,

A criterion is given which shows when the model of a plasma in ther-
mal cquilibrium may be applied, and also relationships which permit
complete caleulation of the flow of such a plasma in a channel of var-
iable cross section,

Generally speaking, the flow of a plasma with no currents present dif-
fers from the flow of a nonionized gas. This difference is related to
the processes of ionization and recombination taking place in the
plasma. The electrons usually play the main part in these processes,
and so the average energies (temperatures) of electrons and heavy par-
ticles (atoms and ions) may differ. If the inelastic collision frequency
in the plasma is small compared with the elastic collision frequency,
then the temperature difference between the electron component and
the heavy component of the plasma may be considerable.

The simplest cases of one-dimensional plasma flows are considered
with account for ionization and recombination processes and in the
absence of thermal equilibrium among the components.,

1. Initial assumptions and the system of equations.
We will consider the one-dimensional steady-state
flow of an inviscid plagma not in thermal equilibrium
using the two-fluid approximation, It is assumed that
the electrons have a Maxwellian velocity distribution
and that the time for the plasma to arrive at a state
of thermodynamic equilibrium is much less than the
characteristic times of the other processes under
consideration. It is assumed for simplicity that the
plasma is composed of a monatomic gas, while direct
ionization by electron impact is important:
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Tor thermodynamic equilibrium this process should,

by the principle of detailed balancing, be balanced by
the reverse recombination process:

() +2() ~ () 4.

Since ionization comes about in the forward process
on account of the electron energy, the energy released
in the reverse process upon recombination is also
transferred to the electron. The inelastic processes in
the plasma, if they are of such a nature, are deter-
mined by the electron temperature alone, Thus, from
the point of view of a process changing the plasma
composition, we may in this case consider a plasma
which is not in thermal equilibrium as a plasma in
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thermal equilibrium with a temperature equal to the
electron temperature in the nonequilibrium plasma,
and determine its concentration by means of Saha's
equation from the electron temperature (see also [1]).

The system of macroscopic equations for the plas-
ma components is given in the general case in [2], for
example. For our case the equation of conservation of
the number of heavy particles, Saha's equation, and
the equations of state, motion and energy for the plas-
ma as a whole and for the electron component separ-
ately may be written in the form

2 ¢ Y2 .
d nt g (2mmkt,) el,; \
b (HLS) = 0, IT:I_L: == 2 a -————~h3 exp (— 11—"[::’
al ( e iral neiu
P = nkT, ‘PE ) 4 ey, T =1t 4+ -1, Pe == Reht,
ap ap, - (1.1)
mny —— + s 0, i —eneliy |

kt, - eU; ﬂ: ,

m, n, L\

[ne (;A el \] = —npSeE, — 8 2

m. T,

K [ms /ﬂ 2 kt) -‘rncvS(
S

B (te—t).

Here S is the area of the channel cross section,

g; and g, are the statistical weights of the quantum
states of the ion and the neutral atom, t is the tem-
perature of the plasma component, T is the general-
ized temperature, Uj is the ionization potential of
the atom, k and h are Boltzmann's and Planck's con-
stants, P is the plasma pressure, Ex is the polari-
zation field strength in the plasma, 7¢ is the relaxa-
tion time for the electron momentum, & is a constant
~1,

The variables without indices relate to the heavy
component of the plasma, and those with the index e
to the electrons. The dielectric constant and magnetic
permeability of the plasma are taken as being equal
to the values in a vacuum.,

We shall make a short remark concerning the po-
larization field in a plasma. Since we may neglect the
inertia of the electrons in comparison with the heavy
particle inertia, the forces on the electrons should mu-~
tually balance. The action of the electron gas pressure
gradient is compensated by the polarization field which
arises as a result of the separation of charges in the
initial nonequilibrium period of motion.

If dp. / dz < 0, then the polarization field strength
Ex > 0. Moving in this field the electrons expend their
energy, and the ions, and consequently the entire
heavy component, acquire an energy — vdp;/ dz.per
unit volume per second. If dp, / dz > 0,then Ex < 0,
and the heavy component loses, the electrons acquir-
ing the energy indicated above. Energy exchange
through the compensating polarization field occurs
without dissipation as distinct from energy exchange



12

through pair interactions of charged particles.

2. General analysis of the equations. Speed of
sound, It is easily seen that Egs. (1.1) pass into the
ordmary equations of gasdynamics for

ne/n=a< ktleU;. 2.1)

Here « is the degree of ionization of the plasma.

Eliminating the variables n, P, pe and Ex from
Eqs. (1.1) and solving the resulting equations with
respect to the derivatives, we obtain
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Here M? is a dimensionless variable analogous fo
the Mach number; 8 is a dimensionless variable char-
acterizing the degree to which the plasma is in ther-
mal nonequilibrium; U is a dimensionless variable
inversely proportional to the electron temperature;
¢ is the dimensionless coordinate along the channel
axis; L is a characteristic dimension of the channel;
7 is a dimensionless variable characterizing the fric-
tion between the plasma components; M* is a critical
value,

It can easily be seen that the critical value of M?
is always situated in the interval from 3/5 to 1, i.e.,
between the isothermal and adiabatic values, Equat-
ing M? and M*?, we find an expression for the critical
velocity or the velocity of sound:
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Here p = mn is the plasma density.

If p, < p (@8 <€ 1), then the velocity of sound in the
plasma coincides with the velocity of sound in an ordi-
nary gas, as might be expected, In the second limiting
case when a8 > 1 and U > 1, formula (2.6) passes
over into Newton's formula for isothermal sound g% =
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=P | p. This is explained by the fact that in this case
the plasma pressure is determined by the pressure of
the electron component, However, on the assumption,
already made, that the equilibrium concentration is
rapidly attained in the plasma, and for U > 1, the pro-
cesses of ionization and recombination taking place in
the plasma are very sensitive to the electron tempera-
ture and stabilize it. In the remaining cases the ve-
locity of sound in the plasma lies between the isother-
mal and adiabatic values.

For M? = M*? the right sides of Egs. (2.2)~(2.5)
vanish simultaneously on fulfillment of the condition
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Thus the critical cross section in the flow of a non-
equilibrium plasma is not situated in the throat of the
channel, but where the variables satisfy condition (2.7).

If te > t, then the critical cross section is situated
in the expanding part of the channel, and if tg <t in
the contracting part.

We obtain the equations for the dimensionless vari-
ables M? and 6:
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The system of equations (2.4), (2.5), (2.8), and (2.9)
is equivalent to the system of equations (2.2)-(2.5).

It follows from Eq. (2.9) that the plasma can re-
main in a state of thermal equilibrium only when flow-
ing in a cylindrical channel,

We obtain the following expression for the polari-
zation field in the plasma:
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From the equations of conservation of the number
of heavy particles, the energy of the plasma as a

whole (1.1), and Saha's equation, we obtain relation-
ships between the dimensionless variables:
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Setting the expression for 6U / (1 -+ a8)from the

~first equation of (2.11) into (2.6), we obtain
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3. Flow of weakly ionized plasma. If p. <
< 1), but
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In the case under consideration relations (2.11)
simplify as follows:

M2 L3
80,
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+ = o = const,

The latter relation reduces to the inverse proportion-
ality of the degree of ionization o to the square root
of its density.
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4, Flow in a cylindrical channel (§ = const). In this
case the following integral holds:
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Thus plasma flow under these conditions occurs at

a constant electron temperature. An explanation of

Thus we find from (2.11)

the causes of electron temperature stabilization is

given above. In this case the degree of ionization «

increases for te > t and decreases for tg <t.
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Here the condition in the critical cross section

has the form

and the polarization field strength in the plasma is

determined by
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In Fig. 1 the continuous lines represent ¢ = oMY,
and the broken lines M*? — M*? (M?), while

5 1+a181

af0) = oy + ¢ (M* 4 3),
3 1+ a0 1
(o“) *al“}' 0.0, u_" 5M12)

If

15 1-]—(110; 2 2
% — gy gwpny M1 >0,

then o has a minimum for M% = 1, while
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(Fig. 1a). In the opposite case the attainable values
of M? lie outside the interval included between the
roots Mf and Mﬁ of the equation
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On attaining thermal equilibrium (¢ = 1), the plas-
ma flow in a cylindrical channel becomes steady-
state flow, _

We can easily obtain a general picture of the possi-
ble plasma flows in a cylindrical channel (Fig. 2) from
the differential equations (2.8) and (2.9). The contin-
uous curves with arrows in Fig. 2 represent ¢ = Q(Mz)

for different types of flow, the broken curve represents

M*: — M* (M?), and the dash~dot curve
@0 ~ M? — { 42000 [ 5Bt 43 (2 —a)/ 2U (1 — )] =0.

For tg < t the plasma always passes into a state of
thermal equilibrium when the channel is sufficiently
long. Here subsonic flow is retarded, supersonic flow
is accelerated, and the limiting values of M2 (for 6 =
= 1) lie outside the interval

2 ol .
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As is clear from Fig. 2, in subsonic flow the plas-
ma may, for te > t, either pass into a state of thermal
-equilibrium or, if it does not attain a state of thermal
equilibrium in a channel of any length, attain sonic
velocity at the channel exit,

For ty >t in supersonic flow the plasma may attain
a state of thermal equilibrium either in a continuous
flow or across a discontinuity.

The steady-state flow parameters (6 = 1) M**2
U** and a** are in all cases determined by the re-
lationships
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When the velocity of sound is attained at the end
of the channel, the critical plasma flow parameters
U*, o*, and 6* are found from the initial values of

the variables using the relationships
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5, Plasma in thermal equilibrium (6 = 1). As
pointed out above, the dimensionless variable Z en-
tering into Eqs. (2.2)—(2.5) characterizes the fric-
tion among the plasma components. If Z <€ 1, we may
neglect this friction.

If Z > 1,then we should have |8 — 1| < 1. if the
terms on the right sides of these equations are of
identical order of magnitude, This case corresponds
to the model of a plasma in thermal equilibrium. The
criterion of applicability for the model of a plasma
in thermal equilibrium is found more accurately as
follows. Assuming d6/d¢ = 0 in equation (2.9), we
find
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Thus we obtain the necessary condition for the
model to be applicable
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The condition for the usual equations of gasdynamics
to be applied in the description of plasma flows also
has the form (2.1) in this case,
Setting the expression for 6 — 1 from (5.1) into
Egs. (2.2)-(2.5), (2.8), and (2.9), we obtain the sys-
tem for a plasma in thermal equilibriums:
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Thus it follows that the value M? = Mﬁ is the criti-
cal value for the flow of a plasma in thermal equilib-
rium, As in the case of a plasma which is not in ther-
mal equilibrium, it lies between the isothermal and
adiabatic values, Therefore we obtain the expression
for the velocity of sound
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T N (A e A
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(this expression was obtained previously in [3] by an-
other method).

If o« <€ U2, then the velocity of sound in a plasma
which is in thermal equilibrium coincides with the
velocity of sound in a nonionized gas, If aU% >= 1 and
U > 1, then (5.4) passes into Newton's formula for
isothermal sound. The explanation of this ig similar
to that given for a plasma which is not in thermal equi-
librium. In the case under consideration the critical
cross section is situated in the throat of the chamnel.
In the subsonic stream

4 (M?) d d d
LU <o, Lo, H>0, £>0.
In the supersonic stream the derivatives reverse sign.
We obtain the following expression for the polariza-
tion field strength in a plasma in thermal equilibrium:
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In this case the relations between the parameters !
(2.11) have the form
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We find yet another integral from the second and third
equations of (5.3):
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Equations (5.6) and (5.7) allow us to find M% U, and
« as functions of 8. Setting U(x) from (5.7) in (5.4),
we find the velocity of sound
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For steady-state flow in a cylindrical channel we have

2
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Thus we find from the first equation of (5.6)
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This value of M2 corresponds to the propagation
velocity for weak disturbances, so the velocity of
sound is

g e U P
U3z p

It follows from the second equation of (5.6) and
(5.7) that for @ < 1 the plasma will be barotropic
(P ~ p'y; in thig case we have from (5.6) and (5.7)

(6.11)

e
a?exp U = const, o const,
M?43 8
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Thus we have M? as a function of S§/8*:
(M2--3
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It follows from this formula that when ionization is
present the curve S/S* (M ) lies lower that the corre-
sponding curve for an ordinary gas (when ionization is
present an identical increase of Mach number is at-
tained for a smaller variation of channel cross sec-
tion than for an ordinary gas).

Moreover, we find S/S* as a function of U, and
also of a:

5= (et
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The curve (5.14) also lies lower than the corre-
sponding curve for an ordinary gas (when ionization
is present an identical variation of temperature is at-

—U )]"‘/2 (5.14)

(5.15})

tained for a smaller variation of channel area than in

the case of an ordinary gas),
The author is grateful to M. N, Kogan for discuss-
ing the paper.
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